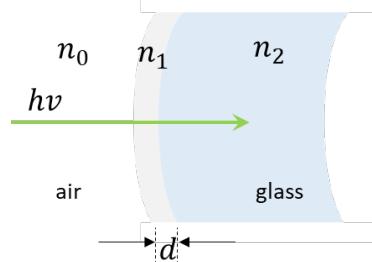


## Exercise 1.1 (Photon properties)

Photons are quantum particles and therefore obey the laws of quantum mechanics  $E = \hbar\omega$  and  $p = \hbar\mathbf{k}$  ( $\mathbf{k}$  is the wavevector). For a photon with a wavelength of 500 nm, calculate its energy (J, eV), frequency  $\nu$ , wavenumber  $\bar{\nu}$  ( $\text{cm}^{-1}$ ), momentum  $p$  and dispersion relation  $\omega(\mathbf{k})$  in vacuum.


## Exercise 1.2 (antireflective coating, interference)

An antireflective coating for a glass lens is designed in order to suppress reflections at a wavelength of 530 nm for perpendicular incidence. You can assume that there is no absorption in the glass and the coating.

- Derive the minimum thickness  $d$  of this layer assuming a refractive index  $n_1 = 1.38$  of the coating material and  $n_2 = 1.5$  for glass.
- Neglecting multiple reflections, estimate the percentage of the suppressed intensity of the reflected light due to the thin coating.

Optional question: Compare your result to the exact solution including multiple reflections.

- What happens with the light that is back reflected at the uncoated interface of the glass? Can this back reflection also be suppressed? Please provide a qualitative answer.



Note: Use  $R = \left(\frac{n_1 - n_2}{n_1 + n_2}\right)^2$  to calculate the reflectance at the  $n_1/n_2$  interface and in analogy at the  $n_0/n_1$  interface.